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Maxwell's demon is a thought experiment created by James Clerk Maxwell in 1867 in which he
suggested how the second law of thermodynamics might hypothetically be violated. In the
thought experiment, a demon controls a small door between two chambers of gas. As individual
gas molecules approach the door, the demon quickly opens and shuts the door so that only fast
molecules are passed into one of the chambers, while only slow molecules are passed into the
other. Because faster molecules are hotter, the demon's behaviour causes one chamber to warm
up and the other to cool down, thereby decreasing entropy and violating the second law of
thermodynamics.

This mechanism implies the presence of an ‘intelligent agent’ (demon) that alters
the natural fate of the system...the issue is much more serious than a scientific

joke: almost totalityof biological explanations follow a ‘Maxwell’s demon’ style.



Regulatory elements (e.g transcription factors) recognize specific regions of DNA and
enhance (or repress) transcription.
Recognition is an intelligent Maxwell’s demon-like activity.

Overview of transcriptional regulation

PROKARYOTIC EUKARYOTIC

These facts happen (e.g.enzymatic activities are based on recognition) but do not constitute
a satisfactory general explanation (as any Maxwell demon this kind of regulation asks for an
‘extra added’energy that restores second principle) for biological regulation. The huge energy
expenditure needed to take care simultaneously of tens of thousands genes and

a simple ..matter of scale.. allow to understand why we need a different approach.....



A matter of scale (why finding a specific gene in the nucleus is more difficult
than finding a needle in an haystack)
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The possible ‘expression patterns’ are limited by the ‘allowed folding states’
of chromatin (with only fine tuning open to specific regulation).

The very limited (in the order of hundreds out of the transfinite number of configurations
theoretically possible with tens of thousands gene each one potentially varying across four
order of magnitude of expression level) number of tissues in metazoans,

each one corresponding to a very stable expression profile, mirrors this condition.

Genome level expression is driven by a ‘rugged landscape’:




Human cell type diversity, evolution,
development, and classification with special
reference to cells derived from the neural crest
Matthew K. Vickaryous* and Brian K. Hall

Biol. Rev. (2006), 81, pp. 425-455. f 2006 Cambridge Philosophical
Society 425 doi:10.1017/S1464793106007068

The most complete (and detailed) list of cell types encompasses 411 different
human cell kinds. Each cell kind has a very invariant gene expression profile.
This ‘invariant profile’ (minimum of a rugged landscape) encompasses general
structuring of higher order chromatin structure, ‘local co-regulation’ of
neighboring sites relates to ‘small changes’ within a given ‘cell-kind specific’
frame (motions on the bottom of the hole).
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Differential staining of peripheral nuclear chromatin with Acridine orange implies
an A-form epichromatin conformation of the DNA

Jekaterina Erenpreisa (27, Jekabs Krigerts®®, Kristine Salmina®, Turs Selga®, Hermanis Sorokins®
and Talivaldis Freivalds®*
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The ‘amount of co-regulation’ (fine tuning) decreases with increasing distance along
the chromosome (independently of the entity and nature of the stimulus).
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Mouse 42 (colon)

Mouse 41 (pituitary)
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The ‘tissue attractor’ is much stronger
than the organism individuality.
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Self-Organizing-Criticality (SOC)

Avalanche Behavior

The sand pile builds ... grain... bygrain . ..

bygrain... bygrain... bygrain...
bygrain... bygrain... bygrain...
Building toward the critical state . . .

Where it avalanches

building building building

4

avalanche avalanche avalanche

Avalanche- a large mass of snow, ice, etc., detached from a
mountain slope and sliding or falling suddenly downward.

Avalanche- anything like an avalanche in suddenness and

overwhelming quantity: an avalanche of misfortunes; an avalanche
of fan mail.
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Figure 1. When a small molecule binds to the allosteric site of a protein,
information is transferred through the protein molecule to its active site.
Two different methods of transmission can be defined. The first
mechanism, here defined as the “domino model”, is a sequential set of
events propagating linearly from the allosteric site to the active site.
Binding of the effector triggers local structural changes that sequentially
propagate via a single pathway to the active site. It was suggested that
this mechanism is applicable for the PDZ domain family,” G protein-
coupled recv.f:]gtors, the chymotrypsin class of serine proteases, and
hemoglobin.™ The second mechanism, defined here conceptually as a
“violin model”, is based on vibration pattern changes inside the protein.
In a violin its pitch can be changed by a slight movement of the violin
player’s finger on the fingerboard. Information about the finger
movement is, thus, transferred throughout the whole body of the violin
with no specific pathway for the signal transduction. By analogy, protein
allosteric site is a fingerboard of the protein and a small signaling
molecule is the player’s finger. If a protein is in a particular vibration
mode, it is possible to suggest that binding a small effector molecule to a
specific site can change this mode. The signal, thus, will be spread
throughout the whole protein including its active site. The “domino
model” is a reliable way to transfer information in a macro world, but on
a molecular level, with significant thermal motions of the protein, this
mechanism will be prone to random triggering of the domino chain
reaction, creating noise in the signaling system. Thermal motions in the
case of the “violin model” do not hinder the transduction. In fact, the
permanent motion of the molecule is a prerequisite for this mechanism.
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Strong links are important, but weak links stabilize
them
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Node degree = number of
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Figure 1. Dentist’s chairmap. The different roles of nodes on the basis of
P values are shown in Table 2. The map refers to the hemoglobin
structure (PDB code 1HBB) partitioned into 4 clusters.



The basic principles of topology-dynamics relations in
networks: An empirical approach

Havva Kohestani®, Mahbubeh Totonkuban?, Luisa Di Paola *, Virginia Todde ¢,

Alessandro Giuliani?

Table 1

Physica A 508 (2018) 584-594

Principal Components (PC) loading profile (Pearson correla-
tion coefficients berween original variables and components)
of the complete data set considered as a whole (no distinction

among different network classes).

PC1 PC2
Extent —0.857 —0.161
Time 0.842 —0.244
Maxdis 0.069 0.977
H. Kohestani et al. / Physica A 508 (2018) 584-594 591
C

Fig. 4. Sample network perturbation in Turbine. The NBN (right) and AAI (left) networks undergo random single point perturbation. The white node is the
source of perturbation that released dissipating energy effects by other nodes (in red) based on rules governing the dynamics of networks. Black nodes are
the ones not affected by . (For of the to color in this figure legend, the reader is referred to the web version of this
article.)
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At tipping point (just before transition)
cell-cell correlation decreases and gene-
gene correlation increases.
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At equilibrium gene
expression profile correlations
(cell-cell) are near to unity
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When cell kind transition happens, motion does not involve only
‘peripherical’ genes (sand grains) but invades (domino/violin effect)
all the genome expression and provokes the motion of normally invariant

(near the identitiy line) genes...
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PC2 (orthogonal to ideal profile variation)

HRG case : 'directions of motion'

28

2,6 -

24

2,2 4

2,0 4

PC2 (mainly)

28

PC1 (ideal profile)

cell-kind attractor

s >
e
2
1
2 oo
z )
r *
r=0.998
2
3 T T T T T
3 2 B o 1 2 3
egft
main oscillating mode (PC2)
[
2
2
0
3 2
s 4
I
]
-10
12 . . . . . . .
a2 0 & 6 4 2 a 2 a [
egf2
HRG loadings
1,3
15min
i) ON-OFF
attheCP P
) ~.
-~
),
10min

observedegf2

rmshrg

rms (egf-hrg)

30 /
A
.
25 /
.
r=0.781
20 25 0
rmseqf
egf2 splitted into hrg2-hrg3
B
.
12 10 -8 g -4 -2 o 2 4 3

estimatedegf2

egf2 = 0.58"hrg2 + 0.45hrg3

ii) Coherent Perturbation on genome-engine

30min iii) EFaalre of the initial-Sandpile Criticality



The independence of the phenomenology of the transition from the particular
selected genes, suggests we can grasp the essential of the transition behavior
by means of collective descriptors of the degree of order of gene expression pattern.

But we need something more:

Predictability of human differential gene expression

Megan Crow?, Nathaniel Lim®“9, Sara Ballouz?, Paul Pavlidis®<, and Jesse Gillis*"

PNAS | March 26,2019 | vol. 116 | no. 13 | 6491-6500

A Gene Overlaps B Global Prior
The identification of genes that are differentially expressed pro- 1500—
vides a molecular foothold onto biological questions of interest. 36 1 ! 0.83
Whether some genes are more likely to be differentially expressed 30 | , '
than others, and to what degree, has never been assessed on a |
global scale. Here, we reanalyze more than 600 studies and find 1000+ 21 I
that knowledge of a gene’s prior probability of differential ex- @ £ 20
pression (DE) allows for accurate prediction of DE hit lists, regard- S § ,
less of the biological question. This result suggests redundancy o 500 ] 8 ° !
in transcriptomics experiments that both informs gene set inter- 10
pretation and highlights room for growth within the field. . '
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Fig. 2. The global DE prior accurately predicts DE hit lists. (A) Recurrence of differentially expressed genes across datasets. The red line indicates the mean. On
average, each gene is DE in 10 expression studies. However, the distribution has a long, right-sided tail, indicating a small number of genes that are frequently DE. (B)
Distribution of AUROC scores using the global DE prior to predict hit lists across the 635 studies. The red line indicates the mean, and the dashed line indicates the null
(0.5). On average, the prior has very high performance, distinguishing ~80% of DE genes within each hit list, reflecting shared transcriptional features between studies.



HRGPC2MAX (hot spots)
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Jorge Luis Borges: El Rigor de la Ciencia (On the
Exactitude in Science)

.. In that Empire, the Art of Cartography attained such Perfection
that the map of a single Province occupied the entirety of a City,
and the map of the Empire, the entirety of a Province. In time,
those Unconscionable Maps no longer satisfied, and the
Cartographers Guilds struck a Map of the Empire whose size was
that of the Empire, and which coincided point for point with it.
The following Generations, who were not so fond of the Study of
Cartography as their Forebears had been, saw that that vast map
was Useless, and not without some Pitilessness was it, that they
delivered it up to the Inclemencies of Sun and Winters. In the
Deserts of the West, still today, there are Tattered Ruins of that
Map, inhabited by Animals and Beggars; in all the Land there is
no other Relic of the Disciplines of Geography.”

purportedly from Suarez Miranda, Travels of Prudent Men, Book
Four, Ch. XLV, Lérida, 1658



